Computing topological degree using noisy information

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing with Noisy Information

This paper studies the depth of noisy decision trees in which each node gives the wrong answer with some constant probability. In the noisy Boolean decision tree model, tight bounds are given on the number of queries to input variables required to compute threshold functions, the parity function and symmetric functions. In the noisy comparison tree model, tight bounds are given on the number of...

متن کامل

On ev-degree and ve-degree topological indices

Recently two new degree concepts have been defined in graph theory: ev-degree and ve-degree. Also the evdegree and ve-degree Zagreb and Randić indices have been defined very recently as parallel of the classical definitions of Zagreb and Randić indices. It was shown that ev-degree and ve-degree topological indices can be used as possible tools in QSPR researches . In this paper we d...

متن کامل

M-polynomial and degree-based topological indices

Let $G$ be a graph and let $m_{ij}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The {em $M$-polynomial} of $G$ is introduced with $displaystyle{M(G;x,y) = sum_{ile j} m_{ij}(G)x^iy^j}$. It is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular ca...

متن کامل

Degree Ranking Using Local Information

Most real world dynamic networks are evolved very fast with time. It is not feasible to collect the entire network at any given time to study its characteristics. This creates the need to propose local algorithms to study various properties of the network. In the present work, we estimate degree rank of a node without having the entire network. The proposed methods are based on the power law de...

متن کامل

A SIMPLE ALGORITHM FOR COMPUTING TOPOLOGICAL INDICES OF DENDRIMERS

Dendritic macromolecules’ have attracted much attention as organic examples of well-defined nanostructures. These molecules are ideal model systems for studying how physical properties depend on molecular size and architecture. In this paper using a simple result, some GAP programs are prepared to compute Wiener and hyper Wiener indices of dendrimers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Complexity

سال: 1990

ISSN: 0885-064X

DOI: 10.1016/0885-064x(90)90029-d